Satisfiability modulo theories (SMT) solving has become a critical part of many static analyses, including symbolic execution, refinement type checking, and model checking. We propose Formulog, a domain-specific language that makes it possible to write a range of SMT-based static analyses in a way that is both close to their formal specifications and amenable to high-level optimizations and efficient evaluation.
Formulog extends the logic programming language Datalog with a first-order functional language and mechanisms for representing and reasoning about SMT formulas; a novel type system supports the construction of expressive formulas, while ensuring that neither normal evaluation nor SMT solving goes wrong. Our case studies demonstrate that a range of SMT-based analyses can naturally and concisely be encoded in Formulog, and that — thanks to this encoding — high-level Datalog-style optimizations can be automatically and advantageously applied to these analyses.