f(x) = y, but y = 5. What’s the probability that x =1? Probabilistic programming is the idea of describing probabilistic models as programs, to then automatically infer how our beliefs about model parameters change given observed data. In recent years, probabilistic programming languages (such as Stan) have demonstrated the power of this approach by becoming the underlying tool behind numerous projects in social science, biology, genetics, astrophysics, and engineering. But why haven’t such languages been more widely adopted yet? In this talk, Maria will talk about the nuts and bolts of probabilistic programming languages, addressing the challenges behind making these languages general-purpose, automatic, and efficient.
This talk and the following AMA will be moderated by Andrew Gordon.
Maria is a Data Science PhD student at the University of Edinburgh, where she works on improving the expressivity and efficiency of probabilistic programming languages. In particular, she is interested in applying program-analysis techniques to existing probabilistic languages, such as Stan, and she is also part of Stan’s development team. Previously, Maria worked as a Research Assistant in the Graphics and Interaction Group at the University of Cambridge, where she also received her BA, developing an interactive development environment for probabilistic programming for her final year project.
Sun 15 NovDisplayed time zone: Central Time (US & Canada) change
13:00 - 13:40 | |||
13:00 40mTalk | Probabilistic Programming: The What, Why and HowAMA REBASE Maria I. Gorinova The University of Edinburgh |
23:00 - 23:40 | |||
23:00 40mTalk | Probabilistic Programming: The What, Why and HowAMA REBASE Maria I. Gorinova The University of Edinburgh |